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A uniform circular me:mbrane, the edges of which are damped to a large, absolutely rigid ring, is considered. In its tmdeformed 
state, the membrane lies in the same plane as the ring. One-dimensional displacements of the ring and membrane in a direction 
perpendicular to that plane are investigated. The problem of stabilizing the state of the system by means of an external control 
force operating in that direction on the ring is studied. Stabilizing control is realized by linear feedback with respect to the 
displacement and velocity of the ring, and the integral of the displacement and deformations of the membrane. Allowance is 
made for a delay in the control loop. The stability of the control process is considered, and the regions of asymptotic stability 
of the desired position of equih'brium of the membrane in the space of the feedback coefficients are found. © 1997 Elsevier 
Science Ltd. All rights reserved. 

The analogous problem of a rod which is deformed by bending [1-3] or subject to longitudinal and 
torsional deformation [4] has already been considered. The problem of controlling the motion of a 
membrane has been investigated in a different formulation (see [5], for example). The problem examined 
below may be of haterest to the problem of stabilizing space film structures [6]. 

1. THE EQUATIONS OF MOTION 

Consider a uniform circular membrane with surface density 13. The edge of the membrane is clamped 
to an absolutely solid ring of mass M and radius a. In its undisturbed state the surface of the membrane 
lies in the same plane as the ring. The membrane tension o is assumed to be the same at every point 
of the deformed and undeformed surface and to operate in a tangential plane. 

We will use a polar system of coordinates r, 0 in the plane of the ring with origin at its centre. The 
equations of motion of the system and the boundary condition can be written in the form 

(O2u d2z~ [1 ~ ( Ou~ 1 O2u] 
P[ a-7+  Srt= J = oLT l rgr) + 7 -r j 

d2z 2~ ~u I 
Tr ado 

0 rma 

(1.1) 

(1.2) 

u(a,O,t) = 0 (1.3) 

Here u(r, 0, t) is the deviation of the membrane at time t from its undisturbed plane surface in a 
direction perpendicular to that surface (when there is no deformation u (r, 0, t) -- 0), z is the deviation 
(displacement of the ring from the desired (given) position in a direction perpendicular to its 
plane, and F is the control force, with vector perpendicular to the plane of the ring. Equation 
(1.1) describes the vibrations of the membrane [7, 8] under the given acceleration of the ring. 
Equation (1.2) describes the motion of the ring and the second term on the fight-hand side describes 
the force on the membrane from the direction of the ring. 

We will introduce the new variable 

v(r,O,t)=u(r,O,t)+z(t) (1.4) 

which characterizes the total deviation of the deformed membrane from its desired position, and the 
dimensionless variables, denoted by asterisks, with the formulae 
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. . 
u = au , v = av*, z = az , r = ar  , t = xt* x 2 = (1.5) 

Substituting relations (1.4) and (1.5) into Eqs (1.1) and (1.2) and omitting the asterisks, we obtain 

02v 1 0 f r 3 V ~  I ~2" (1.6) 
~t 2 = r~rr~, -~rJ + r "~- O0 - ' T  

02vl 1 2"~vJ dO ( M F ] 
"~-~-Ir:l : f -~ '~ ! ~rlr=l " : 2ptra2 ' f :  21toa (1.7) 

In relation (1.7) tt and f a r e  the dimensionless mass of the ring and the force applied to it. This relation, 
which is obtained from Eq. (1.2) using the equation 

v(l,0,t) = z ( t )  (1.8) 

is taken as the boundary condition in the new boundary-value problem. Equation (1.8) is a consequence 
of  boundary condition (1.3). If the control force f i s  independent of  the variable z, the latter is cyclical. 

2. T H E  C O N T R O L  A N D  S T A T E M E N T  OF T H E  P R O B L E M  

I f f  -- 0, the boundary-value problem (1.6), (1.7) has the solution 

v(r ,O, t )  = C (u(r ,O, t )  = O, z = C) 

where C is an arbitrary constant. This solution describes a ring which has an undeformed membrane 
and deviates from the desired position by an amount z = C. When C = 0 we have 

v ( r , O , t ) = O ( u ( r , O , t ) = O ,  Z=0)  (2.1) 

It is interesting to consider the synthesis of  a cont ro l f  for which solution (2.1) of system (1.6), (1.7) 
is asymptotically stable. There are grounds for assuming, however, that it is impossible, simply by 
controlling the motion of  the ring, to stabilize the position of the membrane and suppress any asymmetric 
elastic vibrations of the membrane. We will therefore consider the case in which the vibrations are 
symmetric, and the deformation of the membrane u is independent of the angle 8. In that case Eqs 
(1.6) and (1.7) take the form 

i)(r,t) = - ( r v  ( r , t ) )  , lai~(1,t) = f -  v•(l,t) (2.2) 
r 

The dot denotes differentiation with respect to time and the prime denotes differentiation with respect 
to the coordinate r. Equations (2.1) can be rewritten as follows: 

v ( r , t ) = O  ( u ( r , t ) = O ,  z=O)  (2.3) 

We will construct a control which stabilizes the equilibrium (2.3) of system (2.2) in linear feedback 
form 

t 

Tj~(t) + f ( t )  = -T0v(1, t) - Yi/'(I, t) - Y2 ~ v(l, ~) d~ - ~ ,  tynv" (In, t)  (2.4) 
0 

Here T > 0 is a dimensionless time constant characterizing the delay in the control loop T0, T1 and 
T2 are constant feedback coefficients with respect to the displacement z of the ring, its derivative and 
integral, and % is a feedback coefficient (constant) with respect to the deformation of the membrane 
when r = rn. Everywhere here and below n = 1 , . . . ,  N and summation is carried out from n = 1 to n 
= N. The control process starts at time t = 0. In order to realize the feedback (2.4), a positional pickup, 
together velocity and deformation pickup (tensometers) are needed. 
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The linear botuadary-value problem (2.2), (2.4) has a spectrum of eigenvalues L We will specify 
the problem of stabilizing solution (2.3) of  system (2.2) as follows. In the space of the feedback 
coefficients (2.4), it is required to find a region of  values for which all the eigenvalues X are such that 
ReX < 0. 

For comparison we will also consider a system with feedback (2.4) consisting of  a ring of mass M 
and an undeformed membrane o f  mass prta 2. In the same dimensionless variables the equations of  
motion of  this system, which basically consists of  just one absolutely rigid body of mass M + plra 2, have 
the form 

11.. t ~+~ z = f ,  Tf+f=-yyoZ-.,/l~-y2IZ(;)d ~ (2.5) 
o 

3. T H E  C H A R A C T E R I S T I C  E Q U A T I O N  

We will seek a solution of  boundary-value problem (2.2), (2.4) in the form 

v(r,t) = KeXt g(r) 

where K is a constant, k is an eigenvalue and R(r) is an eigenfunction. 
For the function R(r) we obtain the boundary-value problem 

k2 rR(r) = [rR'(r)]" (3.1) 

[I.tL2R<I) + R'(1)] (Tk + 1)k +()'o k + ,/,k 2 + ,/2)R(1) + k~.o.R"(rn)=O (3.2) 

Introducing the new variable y = r~ we can, as we know [7, 8], represent the function R(r), which 
depends not only on the radius r but also on the parameter ~ in the form R(y). Relations (3.1) 
and (3.2) can then be written as follows (the subscript y denotes differentiation with respect to the 
argument y): 

R(y) = R~,(y) + 1 Rv(y ) (3.3) y - 

[l~k 3 (TL + 1) + Yy0 k + ,/lk 2 + -/2 ]R(Z) + A(k) 

"t'k 2 (T~, d- 1)Ry (k) + k 3 Y. onR~ (rnk) = 0 (3.4) 

The solution of  the Bessel equation (3.3) with R(0) = 1, R'(0) = 0 can be given in the form of a 
series with positive coefficients [8] 

2+ 1-(--'Y) +... (3.5) 
R(y)=l+ 2!" k 2 J  k!'~,2J 

Equation (3.4) is the required characteristic equation of the system. Since relations (3.3) and (3.4) 
are homogeneous with respect to the function R, the condition R(0) = 1 does not limit the generality 
of  the analysis. In the case of a fixed ring, the characteristic quasi-polynomial R(X) of  the system is 
described by expression (3.5). When ?2 = 0, both sides of Eq. (3.2) as well as (3.4) must be divided 
byk. 

It follows from relations (3.4) and (3.5) that A(0) = T2. As X ---> .o, R(X) ---> ** and A(X) ---> -0. Thus for 
-/2 < 0 Eq. (3.4) has a real root k > 0, and solution (2.3) is unstable. Let AI(X) = A(X)fk. Then when 
-/2 = 0, AI(0) = T0. When X ---> .o, Al(k) ---> .o. Thus when -/2 = 0, TO < 0 (positive feedback) Eq.(3.4) has 
a real root k > 0 and equilibrium (2.3) is unstable. Let A2(X) = AI(k)/L Then when -/2 = T0 = 0, A2(0) 
= 3'1- As k ---> ~, A2(k) ~ ~. Thus when -/2 = T0 = 0, "[1 < 0 (negative damping) Eq. (3.4) has a real root 
k > 0 and equilibrium (2.3) is unstable. The inequalities -/2 > 0, TO > 0 (for -/2 = 0), ,/i > 0 (for -/2 = To 
= 0) are necessary conditions of  asymptotic stability of solution (2.3). Necessary and sufficient conditions 
for stability (the exact regions of stability in the space of  the feedback coefficients) will be obtained 
below using the method of D-partitions [9]. 

In Eq. (3.4) we put k = ito, where co is a real number, and consider its real and imaginary parts 
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7] I-Lto4 - -  ¥1to 2 "1" ~2]  Jo ( to )  + Tto3J l ( to)  = 0 

(~0 - gto2 )tald0 (to) _ to2j i  ((0) - to3 ~¢JnRyy(rn i to  ) = 0 (3.6) 

Here J0(to) = R(/to), Jl(to) = -/Rr(ito) are Bessel functions of the first kind of order zero and one, 
respectively. 

In the space of the system parameters, relations (3.6) define the image of the imaginary axis 
= ito, --** < to < + 0-. They are unchanged when to is replaced by -co. We will therefore find the 

boundary of the region of asymptotic stability in the parameter space by constructing the surface (3.6) 
for 0 ~< ¢o < ~. 

4. THE R E G I O N S  OF S T A B I L I T Y  

We will construct the regions of asymptotic stability analytically, starting from particular eases and 
then proceeding to more general ones. 

Suppose first that 

t~, = 0, Y2 = 0, T = 0 (4.1) 

If Y2 = 0, we must first of all divide both sides of Eqs (3.6) by to. Instead of (3.6) under conditions 
(4.1) we obtain the equations 

71ox/0(to) = 0 (Yo - I ~toz)J0(to)- taJI (CO) = 0 (4.2) 

When to = 0 we obtain the equation Y0 = 0 from (4.2). As we know [8], the zeros of the functions 
J0(to), Jl(to) are different and moreover alternate. Thus, when to > 0 Eqs (4.2) are only valid if 3'1 = 0. 
For to > 0 the second of Eqs (4.2) can be written in the form 

Y0 =~ tto2 +~(to), ~(to) = ttt/l(to) / J0(to) (4.3) 

Let tok (k = 1, 2 , . . . )  denote the positive zeros of the Bessel function J0(to), J l ( to) ,  numbered in 
increasing order. From the differential relations between the functions J0(to) and Jl(to) we can see that 
the derivative of the function ~(co) is always positive. Thus, the quantity (4.3) increases strictly monotonely 
from zero to +0- as to changes from zero to oh, and increases strictly monotonely from --** to +** as to 
increases from tok to tok+l (k = 1, 2 . . . .  ). Thus, as to changes from zero to infinity the point (4.3) traverses 
the axis "/1 = 0 from --00 to +** an infinite number of times. Hence the boundaries of the region of 
asymptotic stability, if there is one, are on the straight lines T0 = 0 and 71 = 0. It follows from Section 
3 that outside the region Y0 ~> 0, Y1 ~> 0, for the roots Z of Eq. (3.4), Re Z > 0. Thus, under condition 
(4.1), the region of asymptotic stability, if it exists, can be described by the inequalities 

Y0 > 0, YI > 0 (4.4) 

It turns out that there is asymptotic stability in the region (4.4), which we denote by D. 

This can_ be proved by the method described in [ 1, 2, 4,10,11 ]. We multiply both sides of Eq. (3.1) by the conjugate 
function/~r) and integrate from zero to one. Using boundary conditions (3.2) and the condition R '(0) = 0, we obtain 

k2I!rR(r)R(r)dr+[tR(I)-R(l)]+ kYiR(I)R'(l) + 

I 
+YoR(I)R'(1) + ~ r R ' ( r ) R ' ( r ) d r  = 0 

o 

In domain (4.4) the coefficients of the resulting quadratic equation in k are non-negative. Thus for all its eigenvalues 
ReX ~ 0. Since Re X = 0 only on the boundary of region (4.4), inside that region for all the eigenvalues 

ReX < 0. 

In the case when T2 = T = 0 also, the region of asymptotic stability of the equilibrium state z(t) - 0 
of system (2.5) can be described by inequalities (4.4). Thus the "pliability" of the membrane has no 
influence on the region of stability in this case. 
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Suppose now that T > 0. We will consider the more general case than (4.1) where 

on = 0, Y2 = 0 (4.5) 

Dividing Eq. (3.6) by to and assuming first that to = 0, and then to > 0, we find that the boundary of 
the region of stability is made up of segments of the straight fine Y0 = 0 and the straight line 

T0 = ~to2 + ~ ( t o ) ,  -/I = ~ tTto2 + T~(to) (0 ~< tO < oo) 

The parametric equations (4.6) describe a straight line, since they imply that 

-/t = / ' to  

(4.6) 

(4.7) 

As the quantity to changes from zero to +**, the point (4.6) traverses the entire straight line (4.7) an 
infinite number of  times. 

Let D(T) (Fig. 1) denote the region defined by the inequalities 

-/o > O, YI > TYo (4.8) 

For -/0, Y1 ~ D(T), for all the eigenvalues ~ Re ~. # 0 since Re X = 0 only when T0 = 0 or "/1 = Ty0. We 
will construct the set D(T) in the space of the three parameters -/0, -/1, T for 0 < T < **. The eigenvalues 
Z are a continuous function of T. As T --* 0 we have D(T) -~ D, where D is the region of asymptotic 
stability (4.4) in case (4.1). It follows that in case (4.5) solution (2.3) is asymptotically stable if and only 
if-/o, YI ~ D(T). 

Using the Httrwitz conditions we find that the region of asymptotic stability of equilibrium z(t) - 0 
of system (2.5) in the case when T2 = 0 can also be described by inequalities (4.8). Hence, as in the case 
T2 = T = 0, the "pliability" of the membrane has no influence on the region of stabifity. 

Suppose now that T > 0 and -/2 ~e 0. We will consider a more general case than (4.5), where only 

6 n =0 (n=l,2 ..... N) (4.9) 

It was shown in Section 3 that when "[2 < 0 solution (2.3) of system (2.2), (2.4) is unstable. We shall 
therefore assume that ~2 > 0. We choose some quantity T2 > 0 and construct the region of stability 
D(T, ~) in the plane of  the coefficients -/0, -/1. Obviously the boundary F(T, -/2) of the region D(T, -/2) 
is described by parametric equations similar to Eqs (4.6) but with the additional term T~Jto" in the second 
of  them; moreove:r in this case 0 < to < ~ .  As to --, 0 the curve F(T, T2) gets closer and closer to the 
axis T0 = 0, and as to ~ to1 gets closer and closer to the straight line 

":i =/~'0 +-/2 / to~ 

~'~ T>0, ~.~o, ~;~=0 

Fig. 1. 

r. 

Fig. 2. 
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which is parallel to the straight line (4.7) and lies above it. 
Let the region of asymptotic stability of equilibrium z(t) - 0 of system (2.5) be denoted by E(T, 72). 

Using the Hurwitz conditions we find that the region E(T, 3'2) is bounded by a branch of the hyperbola 

(1) 
~0(3'1-T'~¢0) - ~ + ' ~  3'2 = 0  (3'0>0, 71>0,  7 2 > 0 )  (4.10) 

The asymptotes of this hyperbola are the axis 3'0 = 0 and the straight line (4.7). 
We will substitute the functions 3'0(to) and 71((0) of the equation of the boundary F(T, 72) into the 

left-hand side of Eq. (4.10). Using the differential relations between Bessel functions, it can be shown 
that the resulting function is positive for 0 < to < oh. As to ~ 0 it tends to zero and as co ~ oh it tends 
to infinity. Thus the boundary F(T, 72) lies above the boundary F1 (4.10), an d the domain D(T, 3'2) lies 
entirely inside the domain E(T, 3'2) (Fig. 2). Thus, unlike cases (4.1) and (4.5), in case (4.9) the region 
of stability is smaller for a pliable membrane than for an absolutely rigid membrane. 

5. THE R E G I O N  OF S T A B I L I T Y  W H E N  T E N S O M E T E R S  A R E  U S E D  

We will consider a more general case than (4.9), where 

o l;eO, q=O,  o 2 = 0  3 . . . . .  o . = O  (5.1) 

The last term on the left-hand side of Eq. (3.4) then has the form ~.3ol/2. 
Let A3(g) = A(~.)/Z 3. Then for 7o = 3'1 = 72 = 0, A3(0) = tt + (oi + 1)/2. For ~. ---} **, A3(~.) ~ **. Thus 

for ol < -(1 + 2B) at the point 3'0 = 3'1 = 3'2 = 0 Eq. (3.4) has a real root Z > 0, and equilibrium (2.3) 
is unstable. The same applies for ol < - (1 + 2p) and in a small neighbourhood of the point 3'0 = 
7 1 = 3 ' 2 = 0 .  

Suppose that, in addition to condition (5.1), the condition 

3'2=0 (5.2) 

applies at first. 
Let D(T, ol) denote a set in the half-plane 7o, 71 > 0 bounded by the semi-axis 7o = 0, 71 > 0 and 

the curve F(T, ol), the parametric equations (parametric co C (0, oh)) of which, for constant values of 
T > 0, oi, are like Eqs (4.6) but with the additional term alto'/(2/0(to)) in the first equation. Since 71(o)) 
> 0 and ¥1(to) -'> oo as to ~ oh, the curve r(r, ol) lies in the upper half-plane of the plane (¥0, 71) and 
is unbounded. Moreover, the function 3'1(to) increases strictly monotonely as to increases from 0 to oh, 
and so the curve F(T, th) has no self-intersections. 

As ol ---> O, D(T, Ol) --> D(T), since the curve F(T, ol) approaches the straight line (4.7) as ol ---> 0. 
We recall that D(T) is the region of asymptotic stability (4.8) in case (4.5). Thus if the coefficients ol 
are near zero, the set D(T, Ol), and that set only, will be a region of asymptotic stability of the system 
under conditions (5.1) and (5.2). F o r o l  > 0 the quantity 7o(O)) in the equation of the curve F(T, Ol) 
increases strictly monotonely from zero to infinity as to increases from zero to oh, and the curve F(T, 
ol)  lies below the straight line (4.7). As Ol increases the curve F(T, Ol), remaining in the first quadrant, 
"gets lower and lower", approaching the semi-axis 3'o > 0, 3'1 = 0. As the coefficient Ol increases from 
zero to infinity, the set D(T, Ol) (Fig. 3), remaining the region of stability, increases continuously and, 
as ol ~ **, approaches the region D (4.4), which is the region of stability both for an absolutely rigid 
and for an elastic membrane in case (4.1). Thus, the region of asymptotic stability can be expanded by 
including signals concerning the deformation in the feedback. Although the control loop has a delay 
T, that region can "nearly" be expanded to the domain D in which there is stability when T = 0. 

It was shown above that the region of stability of the system under control (2.4) belongs to the half- 
plane 3'o > 0. If 3'o = 0, 3'1 < 0, the characteristic equation has an eigenvalue Z > 0. The curve F(T, Ol) 
lies in the upper half-plane of the plane (Y0, 71)- It follows from the above that the region of stability, 
if there is one, belongs to the first quadrant, that is, region D (4.4), whatever the values o,,, r~ (n = 1, 
2 . . . .  ). In other words, D is the largest possible region of stability. 

If ol < - (1 + 2g), the curve F(T, Ol) , starting at to = 0 from the point Y0 = ~/1 = 0, lies, as can be 
shown, entirely in the second quadrant. Since when 3'2 = 0 for values 70, 3'1 near zero, Eq. (3.4) has a 
root Z > 0, the system is unstable at all points 3'0, 3'1. It follows that a necessary condition for stability 
of equilibrium (2.3) is the inequality 
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O I > -(I + 2B) (5.3) 

Tables of Bessel functions [8] show that (1 + 2tt) > 2/l(oh)/oh. Thus a quantity ol which satisfies the 
inequality 

- 0 ,  < O  I < 0 ,  6 ,  =2Jt(¢Ol)1O) ! (5.4) 

also satisfies inequality (53). It can be shown that under condition (5.4) the quantity ¥0(¢0) in the equation 
of the curve V(T, o:t) increases strictly monotonely as to increases from zero to oh. Moreover it is bounded 
if ol = - o., and tmbounded otherwise. Thus under condition (5.4) the region D (T, ol) is unbounded, 
and also D(T, Ol) ,:  D(T) (Fig. 4). 

If 

-(1 + 211) < O 1 ~ --O. (5.5) 

the function 70(¢o) is positive for small values of co and vanishes once in the interval (0, ¢Ol), and 70(¢0) 
---> --= as to ~ COx. Thus under condition (5.5) the region of stability D (T, o1) in the first quadrant is 
boUnded (Fig. 5). As al decreases from zero to - (1 + 2Ix), the region of stability D(T, 61) decreases 
continuously and strictly monotonely and contracts to the empty set. 

Since under control (2.4) the region of stability of the system is in the maximum possible region D 
and D (T, ol) --> D as ol --> oo, it is impossible to obtain a larger region of stability by putting tensometers 
at other points in addition to the centre of the membrane. 

It is usual to introduce an integral term into the feedback in order to eliminate the static error in 
the control system, where 72 ;e 0. We have already shown that stability can only occur if 72 > 0. In that 
case, the equations of the boundary of the region of stability differ from those given in this section 
in that the second of the equations of type (4.6) contains the additional term 72/to 2. These equations 

• r , > o ,  ~" = o ,  ¢,>o 

Fig. 3. Fig. 4. 

(T, ~t) -" 

<. 

~t 
Y>O, ~ >0, 

Fig. 5. Fig. 6. 
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can be used to determine the structure of the region of stability. When t~l > 0, and also under condition 
(5.4), the region is unbounded and similar to that shown in Fig. 2, while under condition (5.5) it is 
bounded and is "drop-shaped" (Fig. 6). Inequality (5.3) is also a necessary condition for stability when 
7 2 4 0 .  

The equations of the ~boundades of the regions of stability obtained above can be used for the 
aumerical construction of those regions for specific values of the system parameters. 

It is interesting to see that the boundaries of the regions of stability have qualitatively the same 
structure as in [1-4] even though we have been considering an elastic membrane, while the problem 
in [1-4] concerned an elastic rod. Naturally the formulae for the boundaries of the region of stability 
will be different for a membrane and for a rod. 
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